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Data Analysis Plan 
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Lay	Summary:	We	will	analyse	the	DNA	of	up	to	25,000	people	with	ME/CFS	and	compare	

this	with	 controls	 (people	without	ME/CFS,	 Long	 Covid	 (with	 PEM)	 or	 post-viral	 fatigue	

syndrome)	from	the	UK	Biobank,	to	look	for	genetic	differences.	Genetic	data	will	arrive	in	

batches	of	4,800	samples,	so	initial	analyses	will	be	performed	on	a	smaller	sample	but	will	

increase	over	time	as	more	samples	become	available.	These	data	will	be	thoroughly	quality	

controlled	to	minimise	false-positive	findings	in	the	downstream	analyses.	We	will	analyse	

females	 and	males	 separately,	 and	 combined,	 and	will	 also	 stratify	 by	 disease	 onset	 (i.e.	

infectious	 vs	 non-infectious).	 To	 ensure	 that	 any	 observed	 differences	 in	 DNA	 between	

people	 with	 ME/CFS	 and	 controls	 are	 not	 down	 to	 ‘chance’,	 we	 set	 a	 ‘genome-wide	

significance	 threshold’	 which	 will	 help	 us	 be	 confident	 of	 the	 validity	 of	 any	 findings.	

Additionally,	to	ensure	any	genetic	associations	(findings)	are	not	being	driven	by	common	

co-occurring	 conditions	 (including,	 but	 not	 limited	 to:	 IBS	 or	 Fibromyalgia),	 further	

sensitivity	analyses	will	be	performed	to	adjust	for	this.	For	further	validation,	we	plan	to	

replicate	the	findings	of	DecodeME	with	an	independent	group	of	controls	(other	than	the	

UK	Biobank)	but	we	are	yet	to	find	a	suitable	cohort	as	of	yet.		

Technical	 Summary:	 Genome-wide	 analysis	 study	 (GWAS)	 analysis	 will	 be	 performed	

successively	as	data	from	~4,800	sample	batches	is	delivered.	The	GWAS	will	be	performed	

using	two	methods	(logistic	regression	and	a	knockoff	framework)	for	all,	and	for	females	or	

males	separately.	In	the	main	analysis,	UK	Biobank	(UKB)	controls	will	exclude	individuals	

who	self-reported	ME/CFS	or	CFS,	or	are	linked	to	GP	codes	for	ME/CFS	or	those	with	ICD10	

G93.3	 code,	 or	 (potentially)	 those	with	 Long	 COVID	with	 post	 exertional	malaise	 (PEM),	

when	data	become	available.	The	genome-wide	significance	threshold	used	will	be	p<5x10-

8	per	analysis	using	variants	with	minor	allele	frequency	(MAF>1%),	e.g.	for	the	first	analysis	

(~4,800	 cases),	 and	more	 stringently,	 1x10-8	when	MAF>0.5%	are	 considered	with	 large	

sample	size	analyses.	Sensitivity	and	stratified	analyses	will	be	deployed	to	investigate:	(a)	

if	a	genetic	association	(“a	hit”)	is	driven	by	a	mismatch	between	cases	and	controls	arising	

from	DecodeME	selecting	on	conditions	that	often	co-occur	with	ME/CFS;	and,	(b)	if	a	hit	is	

associated	with	a	particular	co-occurring	condition	or	else	revealed	when	subsets	of	cases	

are	 considered.	 	 Currently,	 there	 is	 not	 an	 appropriate	 (e.g.	 sufficiently	 large)	 cohort	

available	for	replicating	findings.	
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1 Case and control definition 

1.1 Cases 

1.1.1 DecodeME 

Cases	are	(≥	16	years	old)	ascertained	based	on	self-report	of	a	clinical	diagnosis	of	ME/CFS	

given	by	 a	 health	professional	 and	 responses	 to	 a	 set	 of	 questions	 (expanded	here).	 The	

DecodeME	algorithm	selects	participants	based	on	 four	sets	of	answers	on:	1)	 IOM/NAM	

criteria;	2)	CCC	criteria;	3)	My	conditions;	and	4)	DecodeME	exclusionary	criteria.	The	saliva	

DNA	sampled	from	selected	participants	is	extracted	at	the	UK	Biocentre	using	the	Kingfisher	

DNA	extraction	platform.	Failed	extractions	are	repeated.	An	aliquot	of	the	extracted	DNA	

will	be	then	sent	by	batch	(𝑁 < 5,000)	to	ThermoFisher	Scientific	for	genotyping	using	the	

UK	Biobank	Axiom	v2	array.	This	genotyping	platform	was	chosen	 to	match	 that	used	 in	

450,000	UK	Biobank	participants,	the	primary	convenience	controls.	A	second	DNA	aliquot	

is	stored	for	future	whole	genome	sequencing	when	sufficient	funds	are	found.	

The	questionnaire	was	designed	to	know	the	COVID-19	status	before	the	clinical	diagnosis	

of	ME/CFS	as	per	question	25:	“Did	you	have	a	(COVID-19)	infection	when,	or	just	before,	
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your	 first	 ME/CFS	 symptoms	 started?”	 Therefore,	 the	 cases	 can	 be	 segregated	 into	 two	

categories	pre-	or	post-Covid.	The	aim	of	this	study	is	to	recruit	up	to	20,000	participants	

with	ME/CFS	diagnosed	pre-Covid	and	up	to	5,000	diagnosed	with	ME/CFS	after	contracting	

COVID-19.	The	main	analysis	will	be	initially	conducted	on	the	former	subset.	

1.1.2 Limitations 

On-going recruitment 

The	 DecodeME	 project	 is	 still	 recruiting	 participants	 including	 those	 to	 be	 genotyped.	

Therefore,	 several	 rounds	 of	 GWAS	will	 be	 performed	 as	 genotype	 batches	 (about	 4,800	

individuals	as	recommended	by	ThermoFisher,	see	Section	2)	become	available.	However,	

data	 from	batches	will	be	pooled	 if	 they	are	expected	to	arrive	within	one	month	of	each	

other.	

Sex-ratio 

The	data	collected	from	the	first	~17k	DecodeME	participants	 indicates	a	strongly	biased	

sex-ratio	 towards	women	(5: 1)	as	previously	seen	 in	some	studies1.	This	might	 limit	 the	

discovery	power	for	the	male-only	analysis	(see	5.1).	

Ancestry 

The	participants	can	indicate	their	ethnic	group	in	the	questionnaire	(question	9).	The	data	

collected,	 so	 far,	 suggests	 a	 very	 low	 participation	 of	 self-reported	 non-Whites.	 If	 that	

number	does	not	 increase,	 then	 it	might	not	be	possible	 to	use	REGENIE	 (1)	 in	 separate	

genome-wide	association	analysis	per	ancestry	group	due	to	an	insufficient	number	of	cases	

for	a	given	ancestry.	However,	we	will	use	the	KnockOffGWAS	(2)	method	which	allows	us	

to	analyse	diverse	and	admixed	individuals	altogether.		

	

1	ME/CFS	is	known	to	be	more	prevalent	among	females.	Women	are	also	slightly	more	

likely	to	participate	in	population	cohorts	than	men.	



4	

	

1.2 Controls 

1.2.1 UK Biobank 

The	controls	will	be	selected	from	the	UK	Biobank	(UKB),	as	a	general	population	cohort,	but	

excluding	UK	Biobank	participants	with	ME/CFS	as	defined	below.	Furthermore,	 to	avoid	

spurious	 associations,	 UKB	 controls	will	 be	matched	 to	DecodeME	 cases	with	 regards	 to	

genetically	determined	ancestry	by	excluding	ancestry	outliers	 in	either	cases	or	controls	

and	by	fitting	ancestry	informative	covariates	in	the	analysis	model.		

Potential	people	in	UKB	who	have	ME/CFS	will	be	first	identified	as	those	who	self-reported	

chronic	fatigue	syndrome	(“CFS”)	in	the	baseline	questionnaire	(data	field	20002)	or	who	

answered	“Yes”	to	“Ever	had	chronic	Fatigue	Syndrome	or	Myalgic	Encephalomyelitis	(M.E.)”	

in	 the	 pain	 questionnaire	 (data	 field	 120010).	 Participants	 who	 self-reported	 CFS	 but	

answered	 “No”	 to	 the	 pain	 questionnaire	 (N	 =	 88)	will	 be	 excluded	 from	 acting	 as	 UKB	

controls	as	will	those	who	provided an ambiguous response (‘Do not know’ or ‘Prefer not to 

answer’; N = 13). 	

Electronic	health	records	available	in	the	UK	Biobank,	such	as	hospital	in-patient	data	based	

on	ICD-10	codes	and	GP	primary	care	record	information,	will	be	used	to	perform	exclude	

additional	 UKB	 individuals	 from	 acting	 as	 controls.	 The	 G93.3	 ICD-10	 code	 (Post-Viral	

Fatigue	Syndrome)	or	R53	(Malaise	and	 fatigue)	are	unlikely	 to	be	sufficiently	specific	 to	

ascertain	people	with	ME/CFS	in	UKB.	However,	among	the	UKB	participants	linked	to	the	

G93.3	code	(N=1278)	there	is	a	majority	(65%)	of	individuals	identifying	as	having	ME/CFS.		

Similarly,	 these	individuals	are	also	more	frequently	(13%,	N	=	548)	 linked	to	a	ME/CFS-

relevant	 primary	 care	 code	 (Table	 1)	 than	 the	 remainder	 of	 the	 cohort	 (0.1%,	 N=	 512).	

Therefore,	UKB	participants	who	present	either	an	ICD-10	code	G93.3	(N=449)	or	a	ME/CFS	

relevant	 primary	 care	 code	 (Table	 1)	 will	 be	 removed	 from	 controls	 (0.09%	 and	 0.1%,	

respectively)	as	they	report	symptoms	similar	to	those	manifesting	in	people	with	ME/CFS.	
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1.2.2 Limitations 

Age 

At	the	time	of	recruitment	the	UK	Biobank	volunteers	were	aged	between	37	and	73	years	

(y)	old	(median	56y)	while	the	DecodeME	participants’	ages	span	from	16	to	92y	old	(median	

49y).		The	narrower	age	range	among	the	UK	Biobank	controls	means	that	24%	of	DecodeME	

cases	cannot	be	age-matched.	This	age	mismatch	suggests	that	adjusting	for	age	in	the	GWAS	

analysis	would	be	meaningless.	

Sex-ratio 

As	mentioned	above,	the	sex-bias	reduces	the	number	of	controls	who	can	be	used	to	sex-

match	with	ME/CFS	 cases.	 Note,	 therefore,	 that	 sex-stratified	 analyses	 on	 females	 or	 on	

males	will	not	be	similarly	powered.		

1.2.3 Alternative controls 

Given	these	 limitations	and	that	genotypes	of	cases	and	controls	are	acquired	separately,	

performing	the	same	analyses	with	another	control	set	would	allow	some	check	of	whether	

results	are	robust	to	the	choice	of	controls.		Options	of	alternative	controls	include	from	the	

Genomics	 England	 (GEL)	 100,000	 genomes	 project,	 specifically	 the	 parents	 of	 younger	

participants,	 and	Genes	 for	Good,	 imputation	 from	 Infinium	CoreExome-24	 v.1.0	 or	 v.1.1	

array	 data	might	 be	 considered.	 Other	 options	 (e.g.	NextGenScot	 and	 ALSPAC)	 are	more	

limited	in	size	and	in	geography	but	might	also	be	considered.	

2 Cases Genotype Data QC 

The	unprocessed	genotype	data	will	be	returned	by	ThermoFisher	in	the	format	of	CEL	files	

(one	per	sample).	The	genotypes	will	be	called	in	batch	of	up	to	4,800	individuals	(50x	96-

array	 plates)	 using	 the	 Axiom	 Analysis	 suite	 (AxAS	 v5.1)	 following	 the	 Best	 Practices	

Genotyping	 Analysis	 Workflow	 option	 implemented	 in	 the	 inbuilt	 library	

Axiom_UKB_WCSG.r5	 (Fig.	 1).	This	workflow	performs	a	 series	of	quality	 checks	on	both	

samples	and	markers	as	presented	in	the	Axiom™	Genotyping	Solution	Data	Analysis	USER	
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GUIDE	 (see	 here).	We	will	 apply	 the	 recommended	 (“default”)	 filtering	 threshold	 unless	

mentioned	 otherwise.	 Upon	 completion,	 this	 workflow	 returns	 a	 set	 of	 recommended	

variants.	However,	 special	attention	will	be	paid	 to	 the	sex-linked	markers,	variants	with	

strong	 departure	 from	 Hardy-Weinberg	 equilibrium	 (HWE),	 rarer	 variants	 and	

mitochondrial	variants	calls.	Therefore,	extra	QC	steps	need	to	be	performed	to	maximize	

the	number	of	samples	and	variants.	These	steps	are	presented		below.	

	

	

Figure	1:	Capture	of	the	Axiom	Suite	Analysis	software	

2.1 Extra sample-based quality control 

Some	samples	are	flagged	as	“unknown”	sex.	This	highlights	a	discrepancy	between	the	self-

reported	 sex	 and	 the	 genetically	 inferred	 sex	 or	 any	 sex-chromosome	 aneuploidy.	 In	 the	

latter	case,	 this	can	be	 investigated	by	conducting	a	Copy	Number	Variant	(CNV)	analysis	

using	the	AxAS.			The	whole	genome	views	for	the	sex	chromosomes	of	analysed	samples	are	

taken	and	 compared	 to	 those	of	males	or	 females	with	normal	 sets	of	 chromosomes	 (3).	

Samples	with	an	“unknown”	sex	that	remain	unresolved	will	be	flagged	and	removed.	

2.2 Extra marker-based quality control 
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2.2.1 Autosomal and female X chromosome variants 

Variants	with	the	lowest	call	rate	or	showing	the	strongest	departure	from	Hardy-Weinberg	

equilibrium	 will	 be	 visually	 checked	 to	 confirm	 whether	 they	 show	 poor	 clustering	 of	

genotype	calls;	thresholds	for	variants	to	be	exported	are	set	to	90%	call	rate	and	HWE	p	

=10-12	 .	These	are	lax	thresholds	used	because	ancestry	grouping	is	not	done	at	this	stage.			

Further	QC	steps	are	performed	outside	the	Affymetrix	platform	on	the	genotypes	exported	

as	text	files.	

2.2.2 Y chromosome and mitochondrial variants 

For	these	variants,	we	follow	the	recommended	Affymetrix	protocol	detailed	in	the		Axiom™	

Genotyping	Solution	Data	Analysis	USER	GUIDE	(see	here).	 In	summary,	all	 the	probesets	

need	to	be	visually	inspected	to	check	the	following	criteria:	

• Y	chromosome:	after	all	females	are	set	to	“No	call”,	no	heterozygote	genotypes	for	

non-pseudoautosomal	 Y–linked	 markers	 should	 be	 observed	 for	 each	 male	

individual;	 the	 expectation	 is	 that	 only	 two	 clusters	 are	 observed	 in	 a	 population	

sample	for	a	polymorphic	biallelic	Y	marker.	

• Polymorphic	Mitochondrial	variants	are	also	generally	associated	with	two	clusters	

in	population	samples.		

• When	these	criteria	are	not	met,	the	probeset	is	discarded.	

2.3 Population structure 

Understanding	 the	 genetic	 structure	 of	 a	 cohort	 is	 important	 to	 determine	 the	degree	 of	

relatedness	between	participants	 and	 to	determine	 their	 ancestry	 as	 these	 can	 confound	

downstream	analyses.	

2.3.1 Data filtering 

To	estimate	close	relatedness	(up	to	first-degree	cousins	once	removed)	between	individuals	

and	their	genetic	ancestry,	a	subset	of	high	quality	variants	is	selected	from	DNA	variants	

passing	step	2.2.1	(see	above)	by	removing:	
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• Non-autosomal	variants	

• 	(A/T	or	G/C)	DNA	variants	that	can	introduce	DNA	strand	ambiguity	when	merging	

genotype	data	with	the	ancestry	reference	panel		

• Samples	with	call	rate	<	0.95	

• DNA	variants	with	call	rate	<	0.99	

• DNA	variants	with	MAF	<	0.01	

• DNA	variants	in	high	LD	listed	in	(4)	

2.3.2 Relatedness 

Genetic	relatedness	will	be	 inferred	using	KING	(5)	which	 implements	a	kinship	measure	

that	does	not	require	population	allele	frequency	estimates.	Pairs	of	samples	with	a	kinship	

coefficient	over	0.04419	 (1/2	 to	 the	power	k+1,	upper	 limit	of	 expected	 sharing	 for	 first	

cousins	once	removed,	k=4,	degree	of	kinship)	will	be	considered	related.	Identical	samples	

(kinship	coefficient	=	0.5),	monozygous	twins	or	repeated	samples,	will	be	flagged	and	one	

of	each	pair	removed.	The	determination	of	kinship	in	samples	of	uneven	representation	of	

ancestry	groups	can	however	be	distorted	(i.e.	relatedness	of	individuals	from	minor	groups	

will	 be	 inflated).	 Hence,	 kinship	 estimates	 need	 to	 be	 performed	 using	 non	 ancestry-

informative	variants.	These	are	identified	after	a	first	round	of	PCs	analysis	(see	below).	

2.3.3 Ancestry 

Ancestry	will	be	inferred	by	principal	component	analysis	(PCA)	by	projecting	samples	onto	

PCs	of	a	reference	population	with	representative	of	all	major	ancestry	groups,	 	 the	1000	

Genomes	 Phase	 3	 (https://www.internationalgenome.org/data-portal/data-

collection/phase-3).	This	will	be	done	using	the	R	package	bigSNPr	(6)	which	identifies	and	

removes	 long	 range	 LD	 as	 source	 of	 non-ancestry	 related	 	 discriminative	 features	 (e.g.	

chromosome	 inversion).	The	samples	subjected	 to	PCA	need	 to	be	unrelated	so	 that	PCs’	

coordinates	 do	 not	 reflect	 family	 structure.	 	 However,	 ancestry-informative	 variants	 can	

confound	the	relatedness	estimation	within	a	given	ancestry	group.	Therefore,	an	extra		step	

is	added	into	the	pipeline	(Figure	2)	to	remove	ancestry-informative	variants	(PC	loading	>	

0.3)	as	was	done	 for	 the	UK	Biobank	 (4).	The	ancestry	matching	between	 the	DecodeME	
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cases	and	the	UKB	controls	will	be	further	refined	using	the	PCA-based	ancestry	grouping	

method	proposed	in	(6).	The	PCs	will	be	calculated	for	the	merged	case	and	control	sets,	and	

ancestry	 groups	will	 be	defined	based	on	 the	 self-reported	 country	of	birth	with	 at	 least	

1,000	persons	per	group.	

	

	

	

Figure	2:	Overview	of	the	PCA-based	ancestry	grouping.	The	numbered	arrows	indicate	the	step	

order	in	the	workflow.	

Once	major	ancestry	groups	are	defined	it	is	possible	to	apply	further	quality	checks	within	

each	group	to	remove	individuals	with	outlying	heterozygosity	rate	or	variants	departing	

from	Hardy-Weinberg	Equilibrium.	

Outlying heterozygosity 

• Calculate	the	mean	heterozygosity	and	its	standard	deviation	(sd)	in	the	group.	

• Remove	 samples	 whose	 heterozygosity	 rate	 is	 4sd	 away	 from	 the	 mean	

heterozygosity.	
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Departure from HWE 

Remove	variants	with	𝐻𝑊𝐸 < 10!"	within	each	of	the	ancestry	groups.	

3 Case-Control quality control 

3.1 Controls genotyped data recall 

Extra	care	is	required	to	avoid	spurious	associations	arising	from	correlation	structure	in	

the	 data	 due	 to	 the	 project’s	 separate	 genotyping	 of	 cases	 and	 controls.	 A	 batch	 of	 UKB	

controls’	(4,700)	 image	files	has	been	reprocessed	from	scratch	using	the	genotyping	call	

pipeline	described	above	(Section	2)	that	will	be	used	to	call	the	cases,	in	order	to	check	the	

reproducibility	between	our	and	UK	Biobank’s	variant	calls;	only	markers	passing	QC	in	the	

independently	performed	processes	and	with	concordant	genotype	calls	will	be	kept.	

In	 our	 QC,	 concordance	 with	 the	 largest	 and	 homogeneous	 European	 ancestry	 group	

populations’	minor	allele	frequencies	for	controls	will	be	checked	against	references	from	

GnomAD,	as	shown	in	figure	3.		

	

Figure	3:	Allele	frequency	concordance	
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In	addition,	the	concordance	between	genotype	calls	and	the	whole	exome	sequences	(WES)	

will	also	be	checked,	as	the	WES	data	are	now	available	for	the	entire	UK	Biobank.	

	

3.2 Quality control on the merged set of case and controls 

The	DecodeME	cases	and	the	matched	UK	Biobank	controls	(Section	1.2.1)	will	be	merged	

and	evaluated	together.	

• Duplicate	markers,	inconsistencies	of	chromosome,	position,	strand	or	alleles	will	be	

identified.	

• The	degree	of	relatedness	between	all	the	individuals	will	be	estimated	using	KING	

(Section	2.3.2)	

• Following	 LD	 pruning	 and	 removal	 of	 regions	 of	 high	 LD	 (𝑟# > 0.8),	 principal	

component	 analysis	 (PCA)	 using	 unrelated	 𝑘𝑖𝑛𝑠ℎ𝑖𝑝 < 0.04419	 individuals	 will	 be	

used	to	check	for	good	ancestry	matches	between	cases	and	controls.	If	matching	is	

poor	 along	 some	 principal	 components,	 variants	 driving	 discrimination	 will	 be	

flagged	and	removed,	and	PCA	will	be	(re)performed	until	satisfactory	outcomes.	

• Trial	test	of	association	using	PLINK:	variants	corresponding	to	top	associations	will	

be	checked	for	genotype	calls,	GnomAD	population	allele	frequencies	and	consistency	

of	association	p-values	with	linkage	disequilibrium	(LD)	structure.	

4 Genotype imputation for cases 

 

Genotype	imputation	is	an	important	step	prior	to	any	genome-wide	association	study.	This	

process	 allows	 us	 to	 densify	 the	 genetic	 data	 for	 all	 individuals	 by	 inferring	 unobserved	

genotypes	 with	 a	 multi-million	 whole-genome-based	 reference	 panel.	 The	 imputed	

genotypes	boost	 the	statistical	power	of	GWAS	by	 increasing	 the	chance	of	 capturing	 the	

causal	risk	variant	if	there	is	a	true	association	signal	in	a	genomic	region.	In	addition,	it	also	
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helps	 reduce	 the	 risk	 of	 spurious	 associations	 in	 case-control	 association	 studies	 with	

outsourced	controls	such	as	in	the	DecodeME	study.		

	

4.1 Autosomes and X chromosome 

Following	UKB	best	practice	(4),	autosomal	and	X-linked	genotypes’	imputation	will	be	done	

using	two	complementary	reference	panels:	the	Haplotype	Reference	Consortium	(HRC.r1.1)	

and	 the	 merged	 UK10K	 +	 1000	 Genomes	 Phase	 3.	 	 The	 former	 helps	 to	 yield	 quality	

imputation	 for	 common	 and	 low	 frequency	 variants	 while	 the	 latter	 increases	 variant	

number	(especially	 insertions/deletions;	 InDels)	and	diversity.	Neither	of	 these	reference	

panels	 is	publicly	 available	 and	 the	 imputation	will	 need	 to	be	performed	 remotely	 (and	

securely)	 using	 the	 Sanger	 Imputation	 Service	 (https://www.sanger.ac.uk/tool/sanger-

imputation-service/)	provided	by	the	Wellcome	Sanger	Institute	(Hinxton,	UK).	

	

4.1.1 Data QC and preparation 

Prior	to	imputation,	it	is	essential	to	check	genotype	data	against	the	imputation	reference	

panel.	For	this	task,	we	will	use	the	HRC	preparation	checking	tool	developed	by	W.	Rayner	

(https://www.well.ox.ac.uk/~wrayner/tools/).	This	tool	checks	the	strand,	alleles,	position,	

ref/alt	 assignments	 and	 frequency	 differences	 between	 the	 genotyped	 data	 and	 the	

reference	 panel.	 The	 strand,	 position,	 ref/alt	 assignment	 are	 updated	 if	 necessary.	 The	

following	criteria	are	used	to	filter	out	DNA	variants:		

• ambiguous	(A/T	or	G/C)	if	MAF	>	0.4	

• differing	alleles	

• allele	frequency	difference	>	0.2	

• not	in	the	reference	panel	

4.1.2 Phasing and Imputation 
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Phasing 

This	 is	a	critical	step	before	 imputation	which	 improves	both	efficiency	and	accuracy	(7).	

This	process	estimates	the	haplotypes,	blocks	of	variants	inherited	altogether	either	from	

the	paternal	or	maternal	genome,	for	each	individual.	The	phasing	will	be	done	locally	per	

chromosome	 using	 SHAPEIT	 4	 (8)	 which	 implements	 a	 reference-based	 haplotype	

estimation.	 Here,	 the	 genotyped	 data	 will	 be	 phased	 with	 the	 1000	 Genome	 Phase	 3	

reference	panel	which	is	publicly	available.	

Imputation 

The	 imputation	 will	 be	 performed	 by	 the	 Sanger	 Imputation	 service	 using	 the	 PBWT	

imputation	software	(https://github.com/VertebrateResequencing/pbwt)	as	implemented	

in	their	server.	The	phased	data	for	each	chromosome	will	be	sorted	by	genomic	position	

using	GRCh37	coordinates	(to	match	reference	panels	build),	then	concatenated	into	a	single	

VCF	 file,	 which	 will	 be	 uploaded	 into	 the	 Sanger	 Imputation	 server,	 using	 Globus	

(https://www.globus.org/)	 with	 encryption,	 in	 accordance	 with	 data	 privacy	 regulation.	

This	process	is	transient:	once	the	phased	data	are	uploaded,	sanity	checked	and	imputed	

they	will	 be	downloaded	 in	 the	University	 of	 Edinburgh	 secure	 server	 and	 automatically	

deleted	from	the	Sanger	 imputation	server.	The	data	will	not	be	shared	or	used	for	other	

purpose	by	the	Sanger	Imputation	Service.		

As	previously	mentioned	two	complementary	reference	panels	will	be	used.	The	data	will	

therefore	be	imputed	with	the	following	panels	separately:	

• Reference	panel	1:	HRC	(version	r1.1	on	GRCh37)	which	contains	about	40	million	

sites	from	32,470	samples	of	predominantly	European	ancestry.	

• Reference	 panel	 2:	 UK10K+1000Gp3	 (build	 GRCh37)	 contains	 91	million	 variants	

from	 6,285	 diverse	 samples.	 It	 was	 built	 using	 the	 -merge_ref_panels	 option	 of	

IMPUTE2	to	merge	the	two	reference	panels.	The	UK10K	contains	24	million	variants	

from	3,781	predominantly	British	samples.	The	1000	Genomes	phase	3	has	85	million	

variants	provided	by	2,504	samples	from	26	different	populations	around	the	world.	
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After	imputation,	variants	with	a	low	imputation	quality	(INFO	<	0.4)	(9)	will	be	filtered	out.	

Then	 both	 imputed	 datasets	 will	 be	 combined	 into	 a	 single	 set	 of	 imputed	 genotypes	

following	 UKB	 methods	 [1]:	 after	 filtering	 a	 variant	 is	 kept	 if	 it	 is	 present	 in	 only	 one	

imputation,	or	if	seen	in	both	imputations,	only	the	HRC	one	will	be	kept.		

Before	processing	the	DecodeME	genotyped	data,	we	will	do	these	steps	for	the	test	batch	of	

4,700	 UKB	 samples	 previously	 analysed	 (Section	 3)	 to	 check	 for	 concordance	 between	

variants	imputed	in	house	and	the	imputed	variants	provided	by	UK	Biobank.	Any	discordant	

markers	will	 be	 flagged	 and	 removed.	 Subsequent	 to	 this,	 the	 genotype	 call	 rates	might	

change,	and	additional	variants	or	individuals	not	reaching	the	missingness	thresholds	for	

GWAS	analysis	(SNP	<	99%	call	rate	and	Individual	call	rate	<	95%)	removed.		

Each	new	batch	of	DecodeME	genotypes	will	be	pooled	with	the	previous	ones	to	allow	them	

to	be	imputed	together.	

4.2 HLA 

Classical	HLA	alleles	will	be	imputed	using	the	HLA*IMP:02	algorithm	as	previously	done	for	

the	UK	Biobank	(4).	

4.3 mtDNA 

Imputation	of	mitochondrial	DNA	(mtDNA)	will	follow	the	methodology	proposed	in	(10).	

4.4 CNV 

Known	copy	number	variants	(CNVs)	will	be	called	using	the	dedicated	software	PennCNV.	

After	calling,	the	CNV	will	be	quality	controlled	and	analysed	following	the	recommendations	

shown	in	(11).	
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5 Association analysis 

5.1 Merge the cases and control imputed data 

The	DecodeME	cases	and	the	UKB	controls	will	be	both	imputed	separately	(the	latter	done	

by	the	UKB)	using	the	same	reference	panel	(HRC	combined	with	UK10K+1000Gp3)	and	the	

same	methods	(Section	4.1.2).	Before	performing	any	case	and	control	association	analysis	

these	two	sets	will	be	merged	and	subsequent	quality	checks	will	be	done	as	shown	in	section	

3.2.	The	principal	components	will	be	calculated	on	the	merge	set	using	bigsnpr	(6).	We	will	

carry	out	further	quality	control	of	the	genotyped	and	imputed	data	by	doing	genome-wide	

association	studies	on	the	blood	type	provided	by	the	questionnaire	(Q10).	

5.2 Analysis plan 

Different	genome-wide	association	studies	(GWAS)	will	be	performed:	

	

	

	

5.2.1 Main analyses 

	

This	GWAS	(“gwas-1”)	will	be	our	main	analysis	for	which	we	would	like	to	keep	a	general	

population	setting	by	only	removing	from	controls:	(a)	individuals	who	are	ME/CFS	cases	in	

Figure	4:	Overview	of	the	different	analyses	
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the	UK	Biobank	based	on	baseline	and	pain	questionnaire	responses,	and/or	(b)	have	the	

hospital	record	ICD-10	code	G93.3	(Section	1.2),	and/or	(c)	have	a	report	of	long	Covid	with	

Post-Exertional	Malaise	(information	expected	to	be	available	in	Q4	2023),	and/or	(d)	have	

ME/CFS	relevant	primary	care	records.	

	

5.2.2 Sensitivity analyses 

Sensitivity	analysis	allows	us	to	test	whether	a	statistically	significant	GWAS	signal	arises	

only	 from	 subsets	 of	 controls.	 If	 so,	 then	 this	 subset	 of	 controls	 could	 wrongly	 induce	

association	 to	phenotype	A	because	of	 confounding	by	phenotype	B.	 	These	 analyses	 are	

performed	by	carrying	out	a	GWAS	with	and	without	controls	who	match	phenotype	B	(Fig.	

4)	while	keeping	the	same	cases.	This	will	be	done	only:		

1. If	 a	 significant	 variant	 or	 a	 signal	 lies	 in	 a	 genomic	 region	 that	 was	 previously	

associated	with	another	trait	measured	in	UK	Biobank,	or	

2. On	 ME/CFS	 co-occurring	 conditions	 that	 (a)	 are	 defined	 in	 the	 DecodeME	

questionnaire	and	(b)	has	an	equivalent	phenotype	in	UK	Biobank	(Table	2).	

For	a	subsequent	analysis,	we	will	exclude	from	controls	any	individual	who	has	any	less	

direct	evidence	for	ME/CFS	or	post-viral	illness.	For	example,	this	could	be	individuals	linked	

with	the	ICD-10	code	R53	(Malaise	and	fatigue).	

5.2.3 Stratified analysis 

Stratified	 GWAS	 are	 carried	 out	 to	 determine	 whether	 genetic	 variants	 are	 specifically	

associated	with	a	subset	of	the	samples	(Fig.4).	First,	both	analyses	(above)	will	be	stratified	

by	sex-at-birth	(Part	2	Q8	in	the	Questionnaire)	for	both	cases	and	controls.	Controls	for	the	

first	analysis	will	be	sex-matched,	while	for	the	second	they	will	be	split	proportionally	to	

the	cases	to	have	a	similar	case-control	ratio	across	the	different	stratified	GWAS.	Any	other	

stratification	will	be	done	on	cases,	only	for	features,	such	as	infectious	disease	onset	status	

(Q25	 in	 the	 Questionnaire),	 or	 co-occurring	 conditions	 (e.g.:	 Irritable	 bowel	 syndrome,	

fibromyalgia),	with	at	least	1000	samples	per	strata.	
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5.2.4 Combined analysis 

As	 previously	 mentioned,	 DecodeME	 participants	 will	 have	 their	 DNA	 genotyped	 and	

imputed	 following	 the	 UK	 Biobank’s	 standard	 procedure.	 This	 give	 us	 the	 possibility	 to	

combine	into	a	single	set	DecodeME	cases	with	UKB	participants	with	evidence	of	a	ME/CFS	

diagnosis.	We	will	perform	analysis	with	this	combined	set	(against	UKB	controls;	Fig.	5)	

which	would	boost	the	power	of	discovery	for	variants	enriched	in	both	sets.		

	

	

	

5.3 Association testing method 

The	two	following	association	testing	methods	will	be	applied.	

5.3.1 REGENIE 

REGENIE	(1)	is	a	machine-learning	method	performing	whole-genome	regression	on	both	

quantitative	 and	 binary	 phenotypes	 on	 data	 from	 a	 large	 number	 of	 individuals.	 The	

approaches	implemented	in	REGENIE	allow	us	to	account	for	co-factors	or	covariates	that	

could	 influence	ME/CFS	 risk	 and/or	 confound	 case-control	 genetic	 associations	 (sex,	 the	

ancestry	PCs	explaining	most	of	 the	 inter-individual	variation,	multiple	deprivation	 index	

etc),	with	additional	fitting	of	a	polygenic	random	effect	that	accounts	for	cryptic	and	non-

cryptic	relatedness.	We	will	use	the	Firth	logistic	regression	implemented	in	REGENIE	which	

is	robust	to	case-control	imbalance.	

Figure	5:	

Overview	of	the	combination	analysis	
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The	initial	REGENIE	analysis	will	be	performed	on	cases	and	controls	of	European	genetic	

ancestry	only.	This	could	be	extended	to	other	ancestries	provided	we	have	sufficient	cases,	

but	not	to	admixed	samples.	Then,	the	separate	ancestry	GWAS	could	be	meta-analysed	using	

a	trans-ethnic	approach	as	implemented	in	MANTRA	(11).	

5.3.2 KnockOffGWAS 

KnockOffGWAS	(2)	is	a	multivariate	knockoff-filters-based	method	using	a	sparse	regression	

(lasso)	of	binary,	or	quantitative,	phenotypes	on	individual	haplotypes.	This	algorithm	has	

the	advantage	of	accounting	for	covariates,	relatedness,	population	structure,	ancestry	and	

admixture.	 However,	 it	 remains	 limited	 to	 genotyped	 data	 as	 imputed	 genotypes’	

uncertainty	is	not	well	suited	for	this	method.	

5.4 Statistical significance threshold 

In	 any	 genome-wide	 association	 study	 the	 statistical	 significance	 threshold	 is	 critical	 to	

differentiate	true	positive	from	false	positive	genotype-phenotype	associations.	The	nominal	

accepted	p-value	(i.e.	probability	of	association	being	a	false	positive)	of	0.05	when	only	one	

test	is	carried	out	needs	to	be	corrected	for	multiple	testing	(millions	of	variants)	using	the	

Bonferroni	correction.	Therefore,	the	significance	threshold	is	set	to	5𝑥10!$	for	the	analysis	

using	𝑀𝐴𝐹 > 1%	for	the	first	analysis	with	a	batch	of	4,800	cases	and	to	10!$	if	𝑀𝐴𝐹 > 0.5%	

for	larger	sets.	

5.5 Replication and Validation 

5.5.1 Staged GWAS for the ME/CFS cohort 

• Perform	a	discovery	GWAS	using	the	first	batch	of	genotyped	cases	(𝑛 = 4,800:	the	

maximum	number	of	individuals	per	batch),	for	practical	reasons,	and	matching	UKB	

controls.		

• Test	for	replication	of	variants	that	are	significant	(see	thresholds	in	section	5.4)	in	

subsequently	 collected	 cases	 accounting	 for	 multiple	 tests	 corresponding	 to	 the	

number	of	loci	put	forward	for	replication.	

• Joint	analysis	of	all	DecodeME	cases	available	and	matched	UKB	controls.	
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5.5.3 Independent replication 

A	 replication	 of	 significantly	 associated	 DNA	 variants	 using	 independent	 cohorts	will	 be	

important	 to	replicate,	or	not,	 true	associations.	 It	also	helps	highlight	potential	 technical	

issues	such	as	genotyping	or	genotype-calling	error.	

The	Scottish	Health	Research	Register	and	Biobank	(SHARE)	(12)	(700	people	with	ME/CFS	

but	unclear	whether	genotyped)	could	be	a	good	cohort	with	matching	ages.	Alternatively,	

the	USA-based	cohort,	All	Of	Us,	could	also	provide	a	good	solution	but	access	is	currently	

restricted.	Other	cohorts	such	as	23andMe,	Genes	for	Good	and	Genes	and	Health	that	include	

a	 question	 on	 CFS	 diagnosis	 could	 be	 used	 although	 their	 case	 definitions	might	 not	 be	

reliable.	Currently,	there	is	not	an	appropriately	sized	replication	cohort	available.	

5.6 GWAS interpretation and limitation 

For	each	of	the	hundreds	of	thousands	of	variants	tested	with	the	trait,	the	GWAS	analysis	

outputs	 summary	 statistics	 (p-value,	 effect	 size	 and	 its	 standard	 error	 for	 each	 variant	

tested)	that	indicate	what	loci	are	associated	with	the	trait.	However,	further	analyses	are	

required	to	prioritise	causal	variants	from	a	large	number	of	variants	showing	correlated	

associations,	and	to	show	how	they	might	exert	their	function;	to	prioritize	the	target	gene	

affected	 if	 they	are	regulatory	variants;	characterize	 the	regulatory	region	affected	 in	 the	

locus,	if	any,	to	point	to	a	possible	relevant	altered	biological	pathway.	Before	this	analysis	is	

described	in	Section	6,	it	is	important	to	highlight	how	a	hit	is	defined	and	the	limitations	of	

GWAS	we	could	encounter	in	this	project.	

	

What is a hit?  

A	 hit	 corresponds	 to	 a	 genomic	 region	 where	 a	 GWAS	 signal	 has	 been	 detected,	 with	

associations	reaching	the	significant	p-value	threshold	(as	defined	in	Section	5.4).	A	hit	may	

disappear	(lying	below	the	significance	threshold)	among	the	different	analyses	performed	

within	this	study,	e.g.	in	stratified	analyses	where	the	power	of	GWAS	is	reduced	due	to	a	
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lower	sample	size.	To	investigate	whether	the	changes	observed	are	due	to	power	issue,	we	

can	 compare	 the	 effect	 size	 of	 the	 lead	DNA	variants	 between	 the	different	GWAS.	 If	 the	

difference	 in	effect	 size	of	 a	given	DNA	variant	 (lead	DNA	variants	usually)	between	 two	

analyses	 is	 significant	 (Student’s	 t-test	 p-value	<	0.05)	 (13)	 then	 changes	 are	 considered	

meaningful.	

	

Limitations 

Ascertainment	of	the	UKB	controls	is	patchy	(different	sources),	limited	(pain	questionnaire	

on	a	fraction	of	participants,	on-going	curation	of	EHR)	and	low	resolution	in	some	cases.	For	

example,	the	DecodeME	questionnaire	includes	the	active	or	inactive	status	of	comorbidities	

but	this	level	of	information	is	not	available	in	the	UK	Biobank.	Therefore,	it	is	not	possible	

to	fully	match	the	cases	and	the	outsourced	controls.	For	this	reason,	it	is	considered	better	

to	carry	out	the	main	GWAS	(here	gwas-1)	with	a	general	population	control	to	limit	the	risk	

of	spurious	association	(false-positive).			

6 Post-GWAS analysis 

	

6.1 Visualisation 

The	first	step	of	post-GWAS	analysis	is	to	visualise	the	analysis	outcome	in	Manhattan	and	

QQ	plots.	 The	 former	 shows	 the	 genomic	 position	 and	 strength	 of	 association	 (-log10	 p-

values)	for	each	tested	variant.	QQ	plots	show	whether	the	observed	p-values	deviate	from	

the	 expected	 p-value	 under	 the	 null	 hypothesis	 (no	 association);	 a	 deviation	 reflects	 the	

presence	 of	 causal	 effect(s).	We	will	 use	 the	 convenient	 online	 platform	 LocusZoom.org	

which	generates	QQ	plots	and	Manhattan	plots	that	are	contextual	(gene	annotations	and	

local	linkage	disequilibrium	(LD)	patterns),	interactive,	zoomable	and	shareable.	
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6.2 Functional annotation 

Functional	variant	annotation	is	a	crucial	step	for	interpreting	GWAS	results	and	prioritize	

DNA	variants.		First,	it	contextualizes	associated	loci	by	mapping	the	surrounding	genes	and	

the	 local	 LD	 patterns	 (see	 above).	 Second,	 it	 can	 show	 the	 effect	 of	 variants	 on	 genes,	

transcripts,	protein	and	regulatory	region.		

For	 that	 purpose,	 we	 will	 use	 FUMA	 (14)	 an	 integrative	 web	 platform	 that	 performs	

extensive	 functional	 annotation	 for	 all	 DNA	 variants	 in	 genomic	 areas	 identified	 by	 lead	

variants	 using	 multiple	 resources.	 FUMA	 also	 provides	 another	 convenient	 function	 for	

annotating	genes	according	to	their	biological	context.		

Additional	 post	 GWAS	 analyses	 can	 be	 performed	 if	 ME/CFS	 shows	 sufficient	 genetic	

underpinnings	(a	heritability	estimate	will	be	valuable	output	from	the	GWAS	analysis)	and	

signals	detected	are	strong.			

6.3 LD score regression 

LD	score	regression	(LDSC)	(15)	 is	a	 tool	using	GWAS	summary	statistics	 to	estimate	the	

tested	trait	heritability.	It	can	also	be	used	to	estimate	the	genetic	correlation	between	the	

phenotype	of	interest	with	other	traits.		Genetic	correlation	between	ME/CFS	and	relevant	

traits	(hit	driven	or	the	ones	use	for	stratification	analysis)	will	be	done	whenever	possible.	

6.4 Fine-mapping 

Fine-mapping	is	a	statistical	process	for	defining	the	credible	set	of	variants,	i.e.	those	that	

could	cause	the	association	signals,	which	also	ranks	these	variants	by	statistical	support	for	

causality.	 Each	 significantly	 associated	 loci	 (i.e.	 hits;	 see	 Sections	 5.4	 and	 5.6)	 will	 be	

systematically	fine-mapped	to	pinpoint	most	likely	causal	variants	using	Bayesian	tools	such	

as	FINEMAP	(16)	or	SuSie	(17)	that	can	handle	multiple	causal	variants	in	proximity.	

6.5 Colocalisation and Mendelian randomization 

Colocalisation	(18)	and	Mendelian	randomization	(MR)	are	statistical	methods	aiming	to	test	

if	 two	 traits	 share	 a	 genetic	 cause.	Mendelian	 randomization	 tests	whether	 an	 exposure	
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might	have	a	causal	effect	on	an	outcome	using	one	or	more	genetic	variants	as	instrumental	

variables.		Colocalisation	tests	whether	association	signals	shared	by	two	traits	are	caused	

by	the	same	variants.	These	two	methods	are	based	on	different	frameworks	but	share	some	

similarity	and	are	complementary	(19).			

To	test	if	the	GWAS	signals	are	shared	with	expression	quantitative	trait	locus	(eQTL)	data	

from	multiple	tissues	we	will	use	the	summary	data-based	Mendelian	randomization	(SMR)	

(20),	and	the	heterogeneity	in	dependent	instruments	will	be	tested	with	(HEIDI)	(20).	There	

are	other	MR	tools	available	that	could	be	used	if	necessary.	Colocalisation	will	be	performed	

using	the	R	package	coloc	(21).	This	approach	is	applicable	to	other	molecular	quantitative	

trait	 locus	 (molQTL)	 data,	 such	 as	 splicing	 quantitative	 trait	 locus	 (sQTL)	 or	 protein	

quantitative	trait	locus	(pQTL).	

	

Links 

UK	 Biobank:	 https://www.ukbiobank.ac.uk/	 NIHR:	 https://www.ukbiocentre.com/	

TOPMed	 server:	 https://imputation.biodatacatalyst.nhlbi.nih.gov/#!	 PennCNV:	

https://penncnv.openbioinformatics.org/en/latest/	 PLINK:	 https://www.cog-

genomics.org/plink/	 REGENIE:	 https://rgcgithub.github.io/regenie/overview/	

KnockOffGWAS:	https://msesia.github.io/knockoffgwas/	
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Appendix 
	

Table	 1	 Primary	 care	 codes	 for	 diagnoses	 associated	 with	 ME,	 CFS	 or	 Post-viral	 fatigue	

syndrome	

Code	 Diagnostic	

F03y.	 Other	causes	of	encephalitis	(&	[myalgic	encephalomyelitis]	or	[encephalomyelitis	NOS])	Other	causes	of	

encephalitis	Encephalomyelitis	NOS	Myalgic	encephalomyelitis	

XE17Z	 Postinfective	 encephalitis	 (&	 [myalgic	 encephalitis]	 or	 [myalgic	 encephalomyelitis])	 Post-infectious	

encephalitis	Post-infectious	encephalitis	Myalgic	encephalitis	Postinfective	encephalitis	

XE17b	 Encephalitis/myelitis:	 [NOS]	 or	 [encephalomyelitis	 &	 (myalgic)]	 Encephalomyelitis	 Myalgic	

encephalomyelitis	Encephalitis/myelitis	NOS	

Xa01F	 Chronic	 fatigue	 syndrome	 Myalgic	 encephalomyelitis	 ME	 Myalgic	 encephalomyelitis	 Myalgic	

encephalomyelitis	syndrome	Postviral	fatigue	syndrome	PVFS	-	Postviral	fatigue	syndrome	CFS	-	Chronic	



25	

	

Code	 Diagnostic	

fatigue	syndrome	

.F122	 Postinfective	 encephalitis	 (&	 [myalgic	 encephalitis]	 or	 [myalgic	 encephalomyelitis])	 Post-infectious	

encephalitis	Myalgic	encephalomyelitis	Myalgic	encephalitis	Postinfective	encephalitis	

.F38.	 Chronic	 fatigue	 syndrome	 Myalgic	 encephalomyelitis	 ME	 -	 Myalgic	 encephalomyelitis	 Myalgic	

encephalomyelitis	syndrome	Postviral	fatigue	syndrome	PVFS	-	Postviral	fatigue	syndrome	CFS	-	Chronic	

fatigue	syndrome	

F286.	 Chronic	 fatigue	 syndrome	 Myalgic	 encephalomyelitis	 Myalgic	 encephalomyelitis	 ME	 -	 Myalgic	

encephalomyelitis	 Myalgic	 encephalomyelitis	 syndrome	 Postviral	 fatigue	 syndrome	 PVFS	 -	 Postviral	

fatigue	syndrome	PVFS	-	Postviral	fatigue	syndrome	CFS	-	Chronic	fatigue	syndrome	

X75s8	 Chronic	 fatigue	 syndrome	 Myalgic	 encephalomyelitis	 ME	 -	 Myalgic	 encephalomyelitis	 Myalgic	

encephalomyelitis	syndrome	Postviral	fatigue	syndrome	PVFS	-	Postviral	fatigue	syndrome	CFS	-	Chronic	

fatigue	syndrome	

XM06p	 Chronic	 fatigue	 syndrome	 Myalgic	 encephalomyelitis	 ME	 Myalgic	 encephalomyelitis	 Myalgic	

encephalomyelitis	syndrome	Postviral	fatigue	syndrome	PVFS	-	Postviral	fatigue	syndrome	CFS	-	Chronic	

fatigue	syndrome	

	 mild/mod/sev	

F2860	 Mild	chronic	fatigue	syndrome	

F2861	 Moderate	chronic	fatigue	syndrome	

F2862	 Severe	chronic	fatigue	syndrome	

XaPom	 Mild	chronic	fatigue	syndrome	

XaPon	 Moderate	chronic	fatigue	syndrome	

XaPoo	 Severe	chronic	fatigue	syndrome	

	 Activity	management	

XaPeC	 Activity	 management	 for	 chronic	 fatigue	 syndrome	 Activity	 management	 for	 myalgic	 encephalopathy	

Actvty	managm	for	myalg	enceph	

.8Q1.	 Activity	 management	 for	 chronic	 fatigue	 syndrome	 Activity	 management	 for	 myalgic	 encephalopathy	

Actvty	managm	for	myalg	enceph	

8Q1..	 Activity	 management	 for	 chronic	 fatigue	 syndrome	 Activity	 management	 for	 myalgic	 encephalopathy	

Actvty	managm	for	myalg	enceph	

	 Referrals	

XaR7C	 Referral	to	chronic	fatigue	syndrome	specialist	team	Referral	to	myalgic	encephalomyelitis	specialist	team	
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Code	 Diagnostic	

XaRAz	 Referral	for	chronic	fatigue	syndrome	activity	management	Referral	for	myalgic	encephalopathy	activity	

management	

8HkW.	 Referral	to	chronic	fatigue	syndrome	specialist	team	Referral	to	myalgic	encephalomyelitis	specialist	team	

	

Table	2	ME/CFS	comorbidities	or	inclusion/exclusion	criteria	

	

Addison’s	Disease	–	Adrenal	insufficiency	

Cushing’s	syndrome	–	Overactive	adrenal	gland	

Hypothyroidism	–	Underactive	thyroid	

Hyperthyroidism	(overactive	thyroid)	

Anaemia	requiring	treatment	or	blood	transfusion	

Haemochromatosis	(iron	overload)	

Diabetes	

Cancer	(including	lymphoma,	leukemia,	melanoma,	

carcinoma,	neuroendocrine	tumours)	

Upper	airway	resistance	syndrome	

Sleep	apnoea	

Rheumatoid	arthritis	

Lupus	

Polymyositis	

Polymyalgia	rheumatica	

HIV/AIDs	

Multiple	sclerosis	

Parkinson’s	disease	
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Myasthenia	gravis	

B12	deficiency	

Tuberculosis	

Hepatitis	

Lyme	disease	

Clinical	Depression	

Bipolar	Disorder	

Schizophrenia	

Substance	abuse	

cerebral	cyst	

glandular	fever	

orthostatic	intolerance	

Post-exertional	malaise	

Sleep	disorder	

Pain	

cognitive	impairment	

Fatigue	

Extreme	pallor	

Nausea	and	irritable	bowel	syndrom	

Palpitations	

Urinary	frequency	and	bladder	dysfunction	

exertional	dyspnoea	
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lightheadness	

coeliac	disease	

fibromyalgia	

Mast	cell	activation	syndrome	(MCAS)	

Q	fever	

Narcolepsy	

Sjogren’s	syndrome	

Shingles	

	

	


