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Data Analysis Plan 

DecodeME Genetics Delivery Team 

2024-03-17 

Lay Summary: We will analyse the DNA of 18,069 people with ME/CFS and compare this 

with controls (people without ME/CFS or post-viral fatigue syndrome) from the UK Biobank, 

to look for genetic differences. Genetic data will arrive in batches of ~4,800 samples, so initial 

analyses will be performed on a smaller sample but will increase over time as more samples 

become available. These data will be thoroughly quality controlled to minimise false-positive 

findings in the downstream analyses. We will analyse females and males separately, and 

combined, and will also stratify by disease onset (i.e., infectious vs non-infectious). To ensure 

that any observed differences in DNA between people with ME/CFS and controls are not 

down to ‘chance’, we set a ‘genome-wide significance threshold’ which will help us be 

confident of the validity of any findings. Additionally, to ensure any genetic associations 

(findings) are not being driven by common co-occurring conditions (including, but not 

limited to: IBS or Fibromyalgia), further sensitivity analyses will be performed to adjust for 

this. For further validation, we plan to replicate the findings of DecodeME with an 

independent group of cases and, or, controls (other than the UK Biobank).  

Technical Summary: Genome-wide analysis study (GWAS) analysis will be performed 

successively as data from ~4,800 sample batches is delivered. The main GWAS will be 

performed using two methods (logistic regression and a knockoff framework) for all, and for 

females or males separately. In the main analysis, UK Biobank (UKB) controls will exclude 

individuals who self-reported ME/CFS or CFS, or are linked to GP codes for ME/CFS or those 

with ICD10 G93.3 code. The genome-wide significance threshold used will be p≤5x10-8 per 

analysis using variants with minor allele frequency (MAF) ≥1%, e.g., for the first batch 

(~4,800 cases), and more stringently, 1x10-8 when MAF>0.5% are considered with large 

sample size analyses. Sensitivity and stratified analyses will be deployed to investigate: (a) 

if a genetic association (“a hit”) is driven by a mismatch between cases and controls arising 

from DecodeME selecting on conditions that often co-occur with ME/CFS; and, (b) if a hit is 

associated with a particular co-occurring condition or else revealed when subsets of cases 

are considered.  For replicating findings, data from various large biobanks will be used, 

where the electronic health record G93.3 will be used as proxy for an ME/CFS diagnosis. 
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1 Case and control definition 

1.1 Cases 

1.1.1 DecodeME 

Cases are (≥ 16 years old) ascertained based on self-report of a clinical diagnosis of ME/CFS 

given by a health professional and responses to a set of questions (expanded on  here). The 

DecodeME algorithm selects participants based on three sets of answers on: 1) IOM/NAM 

criteria; 2) CCC criteria; and 3) DecodeME exclusionary criteria. The saliva DNA sampled 

from selected participants is extracted at the UK Biocentre using the Kingfisher DNA 

extraction platform. Failed extractions are repeated if possible. An aliquot of the extracted 

DNA is then sent by batch (𝑁 ∼ 5,000) to ThermoFisher Scientific for genotyping using the 

UK Biobank Axiom v2 array. This genotyping platform was chosen to match that used in 

450,000 UK Biobank participants, the primary convenience controls. A second DNA aliquot 

is stored for future whole genome sequencing when sufficient funds are found. 

The questionnaire was designed to know the COVID-19 status before the clinical diagnosis 

of ME/CFS as per question 25: “Did you have a (COVID-19) infection when, or just before, 

your first ME/CFS symptoms started?” Therefore, the cases can be segregated into two 

categories pre- or post-Covid. The aim of this study was to recruit up to 20,000 participants 

https://uoe.sharepoint.com/:b:/r/sites/MEBiomed2/Shared%20Documents/Whole%20Group/10%20Study%20documents%20-%20latest%20versions%20LIVE/2022-10-06%20DecodeME%20questionnaire%20v6.pdf?csf=1&web=1&e=VflYex
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with ME/CFS diagnosed pre-Covid and up to 5,000 diagnosed with ME/CFS after contracting 

COVID-19. Ultimately, DecodeME recruited 18,069 DNA participants. The main analysis will 

be initially conducted with these samples. 

1.1.2 Limitations 

Recruitment 

The DecodeME project has completed recruitment of participants including those to be 

genotyped. Several rounds of GWAS will be performed as genotype batches (about 5,000 

individuals as recommended by ThermoFisher, see Section 2) become available. However, 

data from batches will be pooled if they are expected to arrive within one month of each 

other. 

Sex-ratio 

Questionnaire data collected from the first 17,074 DecodeME participants indicates a 

strongly biased sex-ratio towards women (5: 1)(1) as previously seen in some studies1. This 

might limit the discovery power for the male-only analysis (see Section 5.1). 

Ancestry 

The participants can indicate their ethnic group in the questionnaire (question 9). The data 

collected, so far, suggests a very low participation of self-reported non-Whites (less than 

3%). With such low numbers, it will not be possible to use REGENIE (2) in a separate 

genome-wide association analysis per ancestry group due to an insufficient number of cases 

for a given ancestry. However, we will use the KnockOffGWAS (3) and TarGene (4) methods 

which allows us to analyse diverse and admixed individuals altogether.  

1.2 Controls 

1.2.1 UK Biobank 

The controls are selected from the UK Biobank (UKB) (5,6) (UKB project 76173), as a general 

population cohort, but excluding UKB participants with ME/CFS as defined below. 

Furthermore, to limit the risk of spurious associations, UKB controls will be matched to 

DecodeME cases with regards to genetic sex and to genetically determined ancestry by 

excluding ancestry outliers in either cases or controls and by fitting ancestry informative 

covariates in the analysis model.  

 

1 ME/CFS is more prevalent among females. Women are also slightly more likely to 
participate in population cohorts than men. 
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Potential UKB ME/CFS cases are defined as those who self-reported chronic fatigue 

syndrome (“CFS”) in the baseline questionnaire (data field 20002), those who self-reported 

CFS in the verbal interview at any of the 4 visits to the UKB assessment centre” or who 

answered “Yes” to “Ever had chronic Fatigue Syndrome or Myalgic Encephalomyelitis (M.E.)” 

in the pain questionnaire (data field 120010). Participants who self-reported CFS at baseline 

but answered “No” to this question in the pain questionnaire (N = 88) will be excluded from 

being UKB controls, as will those who provided an ambiguous response (‘Do not know’ N=2,065 

or ‘Prefer not to answer’; N = 19). Potential ME/CFS cases who, in the baseline questionnaire, 

report both CFS diagnosis and good health will be used for neither cases nor controls. 

Electronic health records (EHR) available in the UKB, such as hospital in-patient data based 

on ICD-10 codes and GP primary care record information, will be used to exclude additional 

UKB individuals from acting as controls. The G93.3 ICD-10 code (Post-Viral Fatigue 

Syndrome) or R53 (Malaise and fatigue) are unlikely to be sufficiently specific to ascertain 

people with ME/CFS as cases in UKB. However, among the UKB participants linked to the 

G93.3 code (N=1,278) there is a majority (65%) of individuals self-reporting having ME/CFS 

in the baseline or pain questionnaires.  Similarly, these individuals are also more frequently 

(45%, N = 548) linked to a ME/CFS-relevant primary care code (Table 1 in Appendix) than 

the remainder of the cohort (0.1%, N= 512). Therefore, UKB participants who present either 

an ICD-10 code G93.3 (N=449) or a ME/CFS relevant primary care code (Table 1 in 

Appendix) will be removed from controls (0.09% and 0.1%, respectively) as they report 

symptoms similar to those manifesting in people with ME/CFS. 

 

1.2.2 Limitations 

Age 

At the time of recruitment, UK Biobank volunteers were aged between 40 and 69 years (y) 

old (median 56y) while the DecodeME DNA participants’ ages span from 16 to 93y old 

(median 50y; mean 49y).  The narrower age range among the UK Biobank controls means 

that 24% of DecodeME cases cannot be age-matched. This age mismatch suggests that 

adjusting for age in the GWAS analysis would be meaningless. 

Sex-ratio 

As mentioned above, the sex-bias reduces the number of controls who can be used to sex-

match with ME/CFS cases. Note, therefore, that sex-stratified analyses on females or on 

males will not be similarly powered. At minimum we will use a ratio of 1-to-3 cases-to-

controls. 
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1.2.3 Alternative controls 

Given these limitations and that genotypes of cases and controls are acquired separately, 

performing the same analyses with another control set would allow some check of whether 

results are robust to the choice of controls.  Options of alternative controls include from the 

Genomics England (GEL) 100,000 genomes project, specifically the parents of younger 

participants, and Genes for Good, imputation from Infinium CoreExome-24 v.1.0 or v.1.1 

array data might be considered. Other options (e.g., NextGenScot and ALSPAC) are more 

limited in size and in geography but might also be considered. 

 

2 Cases Genotype Data QC 

The unprocessed genotype data are returned by ThermoFisher in the format of CEL files (one 

per sample). The genotypes will be called in batch of up to 5,000individuals (53x 96-array 

plates) using the Axiom Analysis suite (AxAS v5.1) following the Best Practices Genotyping 

Analysis Workflow option implemented in the inbuilt library Axiom_UKB_WCSG.r5 (Fig. 1). 

This workflow performs a series of quality checks on both samples and markers as presented 

in the Axiom™ Genotyping Solution Data Analysis USER GUIDE (see here). We will apply the 

recommended (“default”) filtering threshold unless mentioned otherwise (Fig. 2.). Upon 

completion, this workflow returns a set of “best and recommended” variants prioritised by 

category (polyHighResolution, NoMinorMono, etc) as detailed in the AxAS manual. However, 

to ensure accuracy and reliability of the results analysis, special attention will be paid to the 

sex-linked markers, variants with strong departure from Hardy-Weinberg equilibrium 

(HWE), rarer variants and mitochondrial variants calls that are more likely to be less well 

genotyped or present problematic clustering. Therefore, extra QC steps need to be 

performed to maximize the number of samples and variants. These steps are presented 

below. 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf
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Figure 2: Screen capture of the Axiom Suite Analysis software 

Figure 1: Quality control flowchart overview 
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2.1 Extra sample-based quality control steps 

Sex of participants are inferred during the automated genotype calling process in AxAS based 

on X and Y linked variants. Samples failing this inference are flagged as “unknown” sex. This 

can reflect underlying sex-chromosome aneuploidy and mosaicism. Such conditions can be 

identified after conducting a Copy Number Variant (CNV) analysis using the AxAS. The 

probeset intensities across whole sex chromosomes of “unknown” sex samples are 

visualised and compared to those of male or female references (7). Samples with an 

“unknown” sex that remain unresolved or presenting sex-chromosome aneuploidy will be 

flagged and removed. Additionally, samples showing a discrepancy between the self-

reported sex in questionnaire at recruitment and the genetically inferred sex are also 

removed as indicative of potential sample mix-ups. 

2.2 Extra marker-based quality control steps 

2.2.1 Autosomal and female X chromosome variants 

Variants with the lowest call rate or showing the strongest departure from HWE will be 

visually checked to confirm whether they show poor clustering of genotype calls; thresholds 

for variants to be exported are set to 90% call rate and HWE p =10-12. These are lax 

thresholds used because ancestry grouping is not done at this stage.   Further QC steps are 

performed outside the Affymetrix platform on the genotypes exported as text files. 

Visual inspection of genotyping clusters 

The AxAS provides visualisation tools to inspect the genotype clusters for further QC (i.e., 

variant not flagged with default/recommended settings of metrics). A cluster plot “displays 

the probeset calls for the selected samples as a set of points in the clustering space used for 

making the calls” with the contrast on the x-axis and the size on the y-axis. 

A non-problematic probeset should display a cluster plot with 3 or 2 (if no minor allele 

homozygotes are present among the samples) clusters that are well defined and separate, as 

shown below (Fig. 3) in an example of polymorphic biallelic variant from DecodeME batch 1. 



 
8 

 

 

Problematic probesets show cluster plots with equivocal patterns (overlapping clusters, 

or bimodal cluster) as in the examples below (Fig. 4): 

 

Figure 3: Example of expected clusters 
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Figure 4: Examples of problematic clusters 
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The problematic probesets detected are systematically removed from further analyses. 

The following rules are applied:  

Obvious cases of miscalled genotypes (e.g., bottom right panel, Figure 4), or unusually 

shaped clusters (top right and bottom left panels) render calls uncertain, possibly due to 

multiallelic rather than bi-allelic variants. These are flagged for removal. 

For some probesets, clusters are touching or overlapping (e.g., Figure 4 far left panel). For 

these, probes were recalled manually or set to “Unknown” or “No call”. Generating “No call” 

or “Unknown” increases genotype call missingness. If the fixed standard missingness 

threshold (2%) is reached or exceeded, then the variant is flagged for removal. 

However, in some cases, adding missed calls (“Unknown” or “No call”) does not change the 

overall genotype call, or the allele frequency. This would be the case, for example, for a 

homozygous cluster whose minor allele is rare. These cases are kept and are similar to the 

“NoMinorHom” category. 

Hardy-Weinberg Equilibrium dependent visual inspection 

Strong departure from HWE can highlight underlying genotyping issues. The Axiom guide 

indicates HWEp <10-9 as indicative of poorly performing probes.  For UKB batch 

reprocessing we applied a laxer threshold of HWEp < 10-12 (cf UKB applied p < 10-50). This 

accounts for a mixed ancestry of samples. A more stringent threshold will be applied in 

downstream analyses as required.  For DecodeME cases, it is more challenging as these are 

selected samples rather than from a general population hence a departure from HWE can 

occur from the applied ascertainment. All probesets with HWEp < 10-7 will be visually 

inspected (as above).  

Plate and batch effect 

It is not expected to see differences in genotype frequencies of a given variant between 

plates. Nevertheless, such a plate effect can occur when the intensities for a variant in one 

plate shift relative to the intensities of other plates within the same batch. Following the UKB 

methodology (4), we test if a given plate yields the same genotype frequencies as all other 

plates within a batch. This is done by using a Fisher’s exact test on the 2×3 contingency table 

of genotype counts for each variant. The null hypothesis (no genotype frequencies 

difference) is rejected (i.e., there is an effect) when the smallest p-value is lower than the 

defined threshold as illustrated in Figure 5. This test is applied to all the best and 

recommended variants (~700,000) returned after genotype calling with AxAS. Any variant 

displaying a significant plate effect is flagged and removed from downstream analysis. 
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Similarly to the plate effect, it is not expected that we observe a significant difference of 

genotype frequencies for a given variant between different batches. The methods described 

above will be implemented at the batch level when multiple batches are available. 

The significance threshold corresponds to a nominal p-value corrected by the number of 

tests carried out. The nominal p-value has been set at 0.005 and the number of tests is the 

product of the number of variants, number of plates, number of batch and the number of 

hypothesis (i.e., batch and plate effects, i.e., 2). So for 1 batch, 53 plates, 700,000 variant and 

2 hypotheses the p-value significance threshold is 7x10-11. 

Concordance analyses 

Discordance between genotypes, for a given variant, between sets of genotype data from the 

same samples would suggest a genotyping issue which could lead to both wrong imputation 

and/or spurious associations.  

Each plate processed by ThermoFisher has two control wells assigned to two individuals 

(NA19315, NA19318) from the AFR group of the 1000G. The first DecodeME batch of 

genotypes has 53 plates, and 51 and 50 genotyped replicates. 

For each marker the discordance can be defined by (4) as: 

d = 1 – max(nAA,nAB,nBB)/(nAA+nAB+nBB) 

Figure 5: Schema of plate effect test 
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where nAA, nAB, nBB is the count of each genotype. If d ≥ 0.05 for at least one of the controls 

then the marker is flagged and excluded. 

 

Concordance analysis will also be done with known DecodeME duplicates present in 

different batches. Discordant variant between batches will be flagged and excluded. 

2.2.2 Y chromosome and mitochondrial variants 

For these variants, we follow the recommended Affymetrix protocol detailed in the  Axiom™ 

Genotyping Solution Data Analysis USER GUIDE (see here). In summary, all the probesets 

need to be visually inspected to check the following criteria: 

• Y chromosome: after all females are set to “No call”, no heterozygote genotypes for 

non-pseudoautosomal Y–linked markers should be observed for each male 

individual. 

• Polymorphic Mitochondrial variants are also generally associated with two clusters 

in population samples.  

 

Probesets for which call clusters aren’t meeting these criteria or cannot be corrected 

manually to do so are discarded. 

2.3 Population structure 

Understanding the genetic structure of a cohort is important to determine the degree of 

relatedness between participants and to determine their ancestry as these can confound 

downstream analyses. 

2.3.1 Data filtering 

To estimate close relatedness (up to first-degree cousins once removed) between individuals 

and their genetic ancestry, a subset of high-quality variants is selected from DNA variants 

passing step 2.2.1 (see above) by removing: 

• Non-autosomal variants 

•  (A/T or G/C) DNA variants that can introduce DNA strand ambiguity when merging 

genotype data with the ancestry reference panel  

• Samples with call rate < 0.95 

• DNA variants with call rate < 0.99 

• DNA variants with MAF < 0.01 

• DNA variants in high LD listed in (8) 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf
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2.3.2 Relatedness 

Genetic relatedness will be inferred using KING (9) which implements a kinship measure 

that does not require population allele frequency estimates. Pairs of samples with a kinship 

coefficient over 0.04419 (1/2 to the power k+1, upper limit of expected sharing for first 

cousins once removed, k=4, degree of kinship) will be considered related. Identical samples 

(kinship coefficient = 0.5), monozygous twins or repeated samples, will be flagged and one 

of each pair removed. The determination of kinship in samples of uneven ancestry 

representation can however be distorted (i.e., relatedness of individuals from minor groups 

will be inflated). Hence, kinship estimates need to be performed using non-ancestry-

informative variants. These are identified after a first round of principal component analysis 

(see below). 

2.3.3 Ancestry 

Ancestry will be inferred by principal component analysis (PCA) by projecting samples onto 

the principal components (PC) of a reference population with representative of all major 

ancestry groups, the 1000 Genomes Phase 3 (https://www.internationalgenome.org/data-

portal/data-collection/phase-3). This will be done using the R package bigSNPr (10) which 

identifies and removes long range linkage disequilibrium (LD) as source of non-ancestry 

related discriminative features (e.g., chromosome inversion). The samples subjected to PCA 

need to be unrelated so that PCs’ coordinates do not reflect family structure.  However, 

ancestry-informative variants can confound the relatedness estimation within a given 

ancestry group. Therefore, an extra step is added into the pipeline (Figure 6) to remove 

ancestry-informative variants (PC loading > 0.3) as was done for the UKB (8). The ancestry 

matching between the DecodeME cases and the UKB controls will be further refined using 

the PCA-based ancestry grouping method proposed in (11). The PCs will be calculated for 

the merged case and control sets, and ancestry groups will be defined based on the self-

reported country of birth with at least 1,000 persons per group. 

 

https://www.internationalgenome.org/data-portal/data-collection/phase-3
https://www.internationalgenome.org/data-portal/data-collection/phase-3
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Once major ancestry groups are defined, we apply further quality checks within each group 

on all markers taken forward: individuals with outlying heterozygosity rate and variants 

departing significantly from HWE are identified. 

Outlying heterozygosity 

• Calculate the mean heterozygosity and its standard deviation (sd) in the group. 

• Remove samples whose heterozygosity rate is 4sd away from the mean 

heterozygosity. 

Departure from HWE 

Flag variants with 𝐻𝑊𝐸𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 10−12 within each of the ancestry groups and remove 

them from downstream analyses. 

3 Case-Control quality control 

3.1 Controls genotyped data recall 

Extra care is required to avoid spurious associations arising from correlation structure in 

the data due to the project’s separate genotyping of cases and controls, albeit with the same 

array design and manufacturer. A batch of UKB controls’ (N=4,700) image files has been 

reprocessed from scratch using the genotyping call pipeline described above (Section 2) that 

Figure 6: Flowchart overview of the PCA-based ancestry grouping. 



 
15 

 

will be used to call the cases, in order to check the reproducibility between our and UKB’s 

variant calls; only markers passing QC in the independently performed processes and with 

concordant genotype calls will be kept. 

Additionally, using the largest and homogeneous European ancestry UKB subgroup, allele 

frequencies (AF) will be checked for discrepancies from those of matched-ancestry 

references from GnomAD (v2.1.1), as shown in Figure 7. Under the assumption of a binomial 

distribution of allele count, we calculate the mean expected allele frequency using either the 

UKB or the GnomAD reference mean as true. Any variants with 6sd away from the expected 

mean is removed. 

 

 

Figure 7: Allele frequency concordance 

 

In addition, the concordance between genotype calls from arrays and those newly generated 

from sequencing – as the whole genome sequences (WGS) available for entire UKB – will also 

be checked using BCFtools, variants with concordance < 95% will be removed.  

 

3.2 Quality control on the merged set of case and controls 

The DecodeME cases and the matched UKB controls (Section 1.2.1) are merged and 

evaluated together. 
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• Duplicate markers, inconsistencies of chromosome, position, strand or alleles have 

been identified. These issues were resolved whenever possible and if not the 

problematic variants were flagged and removed. 

• The degree of relatedness between all the individuals was estimated using KING 

(Section 2.3.2).  The relatedness estimation revealed duplicated samples between the 

DecodeME cases and the UKB cases. This allowed us to carry out a concordance 

analysis for merged genotyped variant between each pair of duplicates using the 

sample-diff function in Plink2. All the discordant variants were flagged and removed 

from analyses if discordant in more than one pair of duplicates. 

• Following LD pruning and removal of regions of high LD (𝑟2 > 0.8), long-range LD 

(10) and inter-chromosomal LD (2), PCA using unrelated 𝑘𝑖𝑛𝑠ℎ𝑖𝑝 < 0.04419 

individuals will be used to check for good ancestry matches between cases and 

controls. If matching is poor along some PCs, variants driving discrimination will be 

flagged and removed, and PCA will be (re)performed until satisfactory outcomes. 

• Following trial test of association using PLINK: variants with low p-value (p<10-6) will 

be checked for departure from GnomAD population allele frequencies in controls, 

consistency of association p-values with LD structure, and genotype calls checked by 

visual inspection of probeset clusters (see 2.2.1) in cases, and controls if necessary, 

with the following rules: 

− If clearly dubious call, as defined in section 2.2.1, then blacklist and remove  

− If apparent good call (non-problematic cluster) for cases then check i) 

controls’ genotyping clusters (only one batch); ii) for multiallelicity, which can 

induce discordant allele frequencies, in repositories (e.g., UKB WGS, GnomAD). 

In either scenario, identified dubious variants will be removed from the 

downstream analysis with UKB controls but nonetheless they will be kept in 

list of DecodeME genotypes passing QC 

− Associated variant is kept if no explanation is found for the genotype calls 

difference in cases and controls  

 

4 Genotype imputation for cases 
 

Genotype imputation is an important step prior to any GWAS. This process allows us to 

densify the genetic data for all individuals by inferring millions of unobserved genotypes 

from a whole-genome-based reference panel. The imputed genotypes boost the statistical 



 
17 

 

power of GWAS by increasing the chance of capturing the causal risk variant if there is a true 

association signal in a genomic region.  

 

4.1 Autosomes and X chromosome 

Following UKB best practice (8), autosomal and X-linked genotypes’ imputation will be done 

using two complementary reference panels: the Haplotype Reference Consortium (HRC.r1.1) 

and the merged UK10K + 1000 Genomes Phase 3.  The former helps to yield quality 

imputation for common and low frequency variants while the latter increases variant 

number (especially insertions/deletions; InDels) and diversity. Neither of these reference 

panels is publicly available and the imputation will need to be performed remotely (and 

securely) using the Sanger Imputation Service (https://www.sanger.ac.uk/tool/sanger-

imputation-service/) provided by the Wellcome Sanger Institute (Hinxton, UK). 

 

4.1.1 Data QC and preparation 

Prior to imputation, it is essential to carry out specific quality checks pertaining to the 

imputation reference panel used. For this task, we will use the HRC/1000G preparation 

checking tool developed by W. Rayner (https://www.well.ox.ac.uk/~wrayner/tools/). This 

tool checks the strand, alleles, position, ref/alt assignments and frequency differences 

between the genotyped data and the reference panel (muted for the cases and set to 10% for 

the controls). The strand, position, ref/alt assignment can be updated if discrepancy is 

flagged. The following criteria are used to filter out DNA variants:  

• ambiguous (A/T or G/C) if MAF > 0.4 

• differing alleles 

• not in the reference panel. 

For cases, an allele frequency difference test between genotypes and the reference is not 

applied. 

We added to the pre-imputation QC by now imposing a reciprocal check with the UKB 

genotypes as described in Figures 8a, 8b and 9, below, to avoid  artificial discrepancies 

between cases and controls genotypes which could lead to downstream spurious 

association. Only variants that passes QC in both cohorts will be imputed.  

 

 

https://www.sanger.ac.uk/tool/sanger-imputation-service/
https://www.sanger.ac.uk/tool/sanger-imputation-service/
http://www.sanger.ac.uk/
https://www.well.ox.ac.uk/~wrayner/tools/
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Figure 8a: Pre-imputation QC for DecodeME genotypes 

Figure 8b: Pre-imputation QC for the UKB genotypes 
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4.1.2 Phasing and Imputation 

Phasing 

This is a critical step before imputation which improves both efficiency and accuracy (12). 

This process estimates the haplotypes, blocks of variants inherited altogether either from 

the paternal or maternal genome, for each individual. The phasing will be done locally per 

chromosome using SHAPEIT 4 (13) which implements a reference-based haplotype 

estimation. Here, the genotyped data will be phased with the 1000 Genome Phase 3 

reference panel which is publicly available. The phasing will be done on all the batches 

available altogether. 

Imputation 

The imputation will be performed by the Sanger Imputation service using the PBWT 

imputation software (https://github.com/VertebrateResequencing/pbwt) as implemented 

in their server. The phased data for each chromosome will be sorted by genomic position 

using GRCh37 coordinates (to match reference panels build), then concatenated into a single 

VCF file, which will be uploaded into the Sanger Imputation server, using Globus 

(https://www.globus.org/) with encryption, in accordance with data privacy regulation. 

This process is transient: once the phased data are uploaded, sanity checked and imputed 

they will be downloaded to the University of Edinburgh secure server and automatically 

deleted from the Sanger imputation server. The data will not be shared or used for other 

purpose by the Sanger Imputation Service.  

 

Figure 9: Pre-imputation QC  

https://github.com/VertebrateResequencing/pbwt
https://www.globus.org/
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As previously mentioned, two complementary reference panels will be used. The data will 

therefore be imputed with the following panels separately: 

• Reference panel 1: HRC (version r1.1 on GRCh37) which contains about 40 million 

sites from 32,470 samples of predominantly European ancestry. 

• Reference panel 2: UK10K+1000Gp3 (build GRCh37) contains 91 million variants 

from 6,285 diverse samples. It was built using the -merge_ref_panels option of 

IMPUTE2 to merge the two reference panels. The UK10K contains 24 million variants 

from 3,781 predominantly British samples. The 1000 Genomes phase 3 has 85 million 

variants provided by 2,504 samples from 26 different populations around the world. 

After imputation, rare variants with a minor allele count (MAC) below 20, or variants with a 

low imputation quality (INFO < 0.4) (9) will be filtered out. Then both imputed datasets will 

be combined into a single set of imputed genotypes following UKB methods (8): the HRC 

variants will be combined with the UK10K+1000G variants absent from HRC. Each new batch 

of DecodeME genotypes will be pooled with the previous ones to allow them to be imputed 

together. 

Thereafter, the DecodeME imputed genotypes are merged with the UK Biobank variants to 

create a single case-control dataset (see Section 5.1).  

 

4.2 Human Leukocyte Antigen Complex 

Classical human leukocyte antigen (HLA) alleles will be imputed using the HLA*IMP:02 
algorithm as previously done for the UKB (8).  

 

4.3 Mitochondrial DNA 

Imputation of mitochondrial DNA (mtDNA) will follow the methodology proposed in (14). 

 

4.4 Copy Number Variants 

Known copy number variants (CNVs) will be called using the dedicated software PennCNV. 

After calling, the CNV will be quality controlled and analysed following the recommendations 

shown in (15). 
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5 Association analysis 

5.1 Merge the cases and control imputed data 

The DecodeME cases and the UKB controls will be imputed separately (as the latter is already 

done by the UKB) using the same reference panel (HRC combined with UK10K+1000Gp3) 

and the same methods (Section 4.1.2). Before performing any case and control association 

analysis these two sets will be merged and subsequent quality checks will be done. 

First, as shown in section 3.2, duplicate markers, inconsistencies of chromosome, position, 

strand, alleles or ambiguous variants with MAF > 0.4 will be flagged and removed if the issue 

cannot be resolved. Second, taking advantage of known duplicated samples between the 

DecodeME cases and the UKB controls (Section3.2), a concordance analysis will be carried 

out on the merged imputed data to identify discrepancies. Applying the aforementioned rule 

(Section 3.2), non-singleton discordant variants will be flagged and removed from 

downstream analyses. Third, we will stratify by caseness to extract the following metrics: 

genotype call missingness, HWE p-value, minor allele frequency and imputation quality. This 

will allow us to apply filters using these metrics before (e.g., only variants with genotype call 

missingness <2% after rounding of posterior genotypes probability using Plink in cases and 

controls will be put forward) or after GWAS. We will use the following lower thresholds: call 

rate > 98%, sample missingness > 97%, INFO > 0.4 and  𝑀𝐴𝐹 > 1% for the first analysis with 

a batch of 4,800 cases and to 10−8 if 𝑀𝐴𝐹 > 0.5% for larger sets of multiple batches. Fourth, 

we will check imputed variants’ allele frequencies in controls against those in the UKB whole 

genome sequencing (WGS) and GnomAD. Imputed variants not present in the UKB WGS or 

failing the allele frequency (controls only) difference binomial test (see Section 3.1) with 

either UKB WGS or GnomAD will be flagged and removed.  

The ancestry PCs will be calculated on the merged set using bigsnpr (10). We will carry out 

further quality control of the DecodeME genotyped and imputed data by doing genome-wide 

association studies on the blood type provided by the questionnaire (Q10). 

5.2 Analysis plan 

Different GWAS will be performed: 
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5.2.1 Main analyses 

 

This GWAS (“gwas-1”) will be our main analysis for which we would like to keep a general 

population setting by only removing from controls: (a) individuals who are ME/CFS cases in 

the UK Biobank based on baseline and pain questionnaire responses, and/or (b) have the 

hospital record ICD-10 code G93.3 (Section 1.2), and/or (d) have ME/CFS relevant primary 

care records. Furthermore, the controls will be sex-matched to the cases to account for the 

biased sex ratio (see Section 1.1.2) reducing therefore the total number of controls. 

 

5.2.2 Sensitivity analyses 

Sensitivity analysis allows us to test whether a statistically significant GWAS signal arises 

only from subsets of controls. If so, then this subset of controls could wrongly induce 

association to phenotype A because of confounding by phenotype B.  These analyses are 

performed by carrying out a GWAS with and without controls who match phenotype B (Fig. 

10) while keeping the same cases. This will be done only:  

1. If a significant variant or a signal lies in a genomic region that was previously 

associated with another trait measured in UK Biobank, or 

2. On ME/CFS co-occurring conditions that (a) are defined in the DecodeME 

questionnaire and (b) has an equivalent phenotype in UKB (Table 2 in Appendix). 

For a subsequent analysis, we will exclude from controls any individual who has any less 

direct evidence for ME/CFS or post-viral illness. For example, this could be individuals linked 

with the ICD-10 code R53 (Malaise and fatigue). 

Figure 10: Overview of the different analyses 
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5.2.3 Stratified analysis 

Stratified GWAS are carried out to determine whether genetic variants are specifically 

associated with a subset of the samples (Fig. 10). First, both analyses (above) will be 

stratified by sex-at-birth (Part 2 Q8 in the Baseline Questionnaire) for both cases and 

controls. Controls for the first analysis will be sex-matched, while for the second they will be 

split proportionally to the cases to have a similar case-control ratio across the different 

stratified GWAS. Any other stratification will be done on cases, only for features, such as 

infectious disease onset status (Q25 in the Questionnaire), or co-occurring conditions (e.g., 

irritable bowel syndrome, fibromyalgia), with at least 1000 samples per stratum. 

 

5.2.4 Combined analysis 

As previously mentioned, DecodeME participants will have their DNA genotyped and 

imputed following the UKB’s standard procedure. This gives us the possibility to combine 

into a single set DecodeME cases with UKB participants who have evidence of a ME/CFS 

diagnosis (see 1.1.2). We will perform analysis with this combined set (against UKB controls; 

Fig. 11) which would boost the statistical power of discovery for variants enriched in both 

sets.  

5.3 Association testing method 

The following three association testing methods will be applied. All the GWAS will be 

performed with REGENIE which is our gold-standard for linear mixed model methods 

accounting for both relatedness and case-control imbalance.  However, two other tools will 

be tested for some GWAS (see below). 

5.3.1 REGENIE 

REGENIE (2) is a machine-learning method performing whole-genome regression on both 

quantitative and binary phenotypes on data from a large number of individuals. The 

approaches implemented in REGENIE allow us to account for co-factors or covariates that 

could influence ME/CFS risk and/or confound case-control genetic associations (sex, the 

ancestry PCs explaining most of the inter-individual variation, multiple deprivation index 

etc.), with additional fitting of a polygenic random effect that accounts for cryptic and non-

cryptic relatedness. We will use the Firth logistic regression implemented in REGENIE which 

is robust to case-control imbalance. 

The initial REGENIE analysis will be performed on cases and controls of European genetic 

ancestry only. This could be extended to other ancestries provided we have sufficient cases, 



 
24 

 

but not to admixed samples. Then, the separate ancestry GWAS could be meta-analysed using 

a trans-ethnic approach as implemented in MANTRA (16). 

5.3.2 KnockOffGWAS 

KnockOffGWAS (2) is a multivariate knockoff-filters-based method using a sparse regression 

(lasso) of binary, or quantitative, phenotypes on individual haplotypes. This algorithm has 

the advantage of accounting for covariates, relatedness, population structure, ancestry and 

admixture. However, it remains limited to genotyped data as imputed genotypes’ 

uncertainty is not well suited for this method. 

5.3.3 TarGene 

TarGene (4) is a statistical workflow that performs targeted estimation of effect sizes, as well 

as two-point (and higher) interactions. This algorithm has advantages of guaranteeing an 

optimal bias-variance trade-off, accounting for covariates, relatedness, population structure, 

ancestry and admixture, and detecting genetic non-linearities (i.e., the effect size of two 

alternate alleles is not twice that of one). It has been used primarily for testing at single loci, 

but for this project will be applied genome-wide. 

 

5.4 Statistical significance threshold of association 

In any genome-wide association study the statistical significance threshold is critical to 

differentiate true positive from false positive genotype-phenotype associations. The nominal 

accepted p-value (i.e., probability of association being a false positive) of 0.05 when only one 

test is carried out needs to be corrected for multiple testing (millions of variants) using the 

Bonferroni correction. Therefore, the significance threshold is set to 5𝑥10−8 for the analysis 

using 𝑀𝐴𝐹 > 1% for the first analysis with a batch of 4,800 cases and to 10−8 if 𝑀𝐴𝐹 > 0.5% 

for larger sets. 

5.5 Validation and replication 

5.5.1 Staged GWAS for the ME/CFS cohort 

• Perform a discovery GWAS using the first batch of genotyped cases (𝑛 = 4,800: the 

maximum number of individuals per batch) and matching UKB controls.  

• Test for validation of variants that are significant (see thresholds in Section 5.4) in 

subsequently collected cases.  A lower p-value of association with an increased 

number of cases would reinforce previous findings.  

• Joint analysis of all DecodeME cases available and matched UKB controls. 
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5.5.3 Independent replication 

A replication of significantly associated DNA variants using independent cohorts will be 

important to replicate true associations. It also helps highlight potential technical issues such 

as genotyping or genotype-calling error. 

A FinnGen team (https://www.finngen.fi/en) investigating ME/CFS, using only EHR 

available in the FinnGen, Estonian and Mass General Brigham biobanks, has agreed to 

collaborate with DecodeME to do mutual replication of our respective findings. This provides 

us with the best opportunity for an independent replication to date. 

5.6 GWAS interpretation and limitation 

For each of the hundreds of thousands of variants tested with the trait, the GWAS analysis 

outputs summary statistics (p-value, effect size and its standard error for each variant 

tested) that indicate what loci are associated with the trait. However, further analyses are 

required to prioritise causal variants from a large number of variants showing correlated 

associations, and to show how they might exert their function; to prioritise the target gene 

affected if they are regulatory variants; characterize the regulatory region affected in the 

locus, if any, to point to a possible relevant altered biological pathway. Before this analysis is 

described in Section 6, it is important to highlight how a hit is defined and the limitations of 

GWAS we could encounter in this project. 

5.6.1 What is a hit?  

A hit corresponds to a genomic region where a GWAS signal has been detected, with 

associations reaching the significant p-value threshold (as defined in Section 5.4).  

A hit may disappear (lying below the significance threshold) among the different analyses 

performed within this study, e.g., in stratified analyses where the power of GWAS is reduced 

due to a lower sample size. To investigate whether the changes observed are due to power 

issue, we can compare the effect size of the lead DNA variants between the different GWAS. 

If the difference in effect size of a given DNA variant (lead DNA variants usually) between 

two analyses is significant (Student’s t-test p-value < 0.05) (17) then changes are considered 

meaningful. 

 

5.6.2 Limitations 

Ascertainment of the UKB controls is patchy (different sources), limited (pain questionnaire 

on a fraction of participants, on-going curation of EHR) and low resolution in some cases. For 

https://www.finngen.fi/en
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example, the DecodeME questionnaire includes the active or inactive status of comorbidities 

but this level of information is not available in the UKB. Therefore, it will not be possible to 

fully match the cases and the outsourced controls. For this reason, it is considered better to 

carry out the main GWAS (here gwas-1) with a general population control to limit the risk of 

spurious association (false-positive).   

6 Post-GWAS analysis 

 

6.1 Visualisation 

The first step of post-GWAS analysis is to visualise the analysis outcome in Manhattan and 

QQ plots. The former shows the strength of association (-log10 p-values) for each tested 

variant along the genome (chromosomal position). QQ plots show whether the observed p-

values deviate from the expected p-value under the null hypothesis (no association). A 

deviation reflects the presence of significant association induced by causal effect(s). 

However, a strong deviation (inflation or deflation) might also indicate an enrichment in type 

I error (i.e., false positive association) caused by potential underlying issues such as 

unaccounted population stratification or covariates.  

Due to its convenience, we will use the online plotting platform LocusZoom.org which 

generates both QQ and Manhattan plots that are contextual (gene annotations and local 

linkage disequilibrium patterns shown), interactive, zoomable and shareable. 

Figure 11: Flowchart overview of the post-
GWAS analysis 

https://my.locuszoom.org/about/
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6.2 Quality control 

6.2.1 HWE departure 

No HWE p-value filtering is applied to the DecodeME and UKB merged imputed data because 

a departure from HWE can reflect biological processes: increased number of homozygotes 

in cases or natural selection in a region (e.g., HLA region). It has also previously been noted 

that significant hits are often enriched with variants that are out of HWE (18). Nevertheless, 

variants showing a large departure from HWE, in controls, need further scrutiny. The HWE 

p-value of such variants should be checked in other control populations of the same ancestry. 

Keeping variants departing from HWE does not impact the GWAS procedure but only the 

outcome which can be filtered post-GWAS.  

6.2.2 LD-based QC 

A GWAS hit is defined by a lead SNP and other SNPs with which it is in LD. It is expected that 

the strength of association (p-value) of a variant is proportional to the genetic correlation 

(LD) between this variant and the SNP leading the association signal. The higher the LD 

correlation, the lower the p-value. Therefore, if there is an inconsistency of association p-

values with LD then the association is likely spurious. LD-based QC, as implemented in 

DENTIST (19) is an efficient way to detect errors in GWAS summary statistics. 

6.2.3 Visual inspection of genotyping cluster 

Any genotyped variants that are significant SNPs or that are LD-clumped with a significant 

lead SNP will have its genotyping cluster inspected primarily in cases and, if needed, in 

controls (but limited to one UKB batch only) following the rules mentioned in section 2.2. A 

miscalled variant might affect imputation locally. Therefore, if such possibility is identified, 

a new local imputation (chromosome-wide) could be redone with the recalled or removed 

variant(s). Subsequently, the GWAS will be rerun.  

Any variant failing these QC tests will be flagged and/or removed which could lead to 

an initial hit to disappear. 

6.3 Functional annotation 

Functional variant annotation is a crucial step for interpreting GWAS results and to prioritize 

DNA variants.  First, it contextualizes associated loci by mapping the surrounding genes and 

the local LD patterns (see above). Second, it can show the effect of variants on genes, 

transcripts, protein and regulatory region.  
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For that purpose, we will use FUMA (20) an integrative web platform that performs 

extensive functional annotation for all DNA variants in genomic areas identified by lead 

variants using multiple resources. FUMA also implements MAGMA (21) a gene-based test. 

Subsequent gene set enrichments could hint at potential biological functions, tissue 

expression, or overlaps with associations for other traits and conditions.  

6.4 LD score regression 

LD score regression (LDSC) (22) is a tool using GWAS summary statistics to estimate the 

tested trait heritability. It will also be used to estimate the genetic correlation between the 

phenotype of interest with other traits.  Genetic correlation between ME/CFS and relevant 

traits (hit driven or the ones use for stratification analysis) will be done whenever possible. 

Additionally, if heritability is non-zero, LDSC can also be used to partition heritability in 

different components such as that contributed by regulatory regions in specific tissues as a 

mean to determine the most relevant biological tissue where genetic variants exert their 

effects (23,24) 

6.5 Fine-mapping 

Fine-mapping is a statistical process for defining the credible set of variants, i.e., those that 

could cause the association signals, which also ranks these variants by statistical support for 

causality. Each significantly associated loci (i.e., hits; see Sections 5.4 and 5.6) will be 

systematically fine-mapped to pinpoint most likely causal variants using Bayesian tools such 

as FINEMAP (25) or SuSie (26) that can handle multiple causal variants in proximity. 

Regulatory annotations obtained from FUMA for causal variants within the credible sets 

defined by fine-mapping can be complemented by using specialized platforms with most up 

to date tissue and cell-type expression evidences, such as FORGEdb (27). 

6.6 Phenome-wide association studies 

Phenome-wide association studies (PheWAS) test whether a variant has been previously 

associated with others traits or diseases. PheWAS can be carried out on curated genotype-

phenotype databases like the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/) 

with tools such as PhenoScanner (28) or LDtrait (29). Other more specialized databases can 

be used such as the GeneATLAS (30) for UKB based genotype-phenotype associations or 

drug target dedicated platform (OpenTarget, https://www.opentargets.org/). Level of 

significance for associations is set by Bonferroni correction for multiple (phenotypes) testing 

taking into account the non-independence of phenotypes.  

https://www.ebi.ac.uk/gwas/
https://www.opentargets.org/
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6.7 Colocalisation and Mendelian randomization 

Colocalisation (31) is a statistical method that tests if two traits share a genetic cause. 

Mendelian randomization (MR) tests whether an exposure might have a causal effect on an 

outcome using one or more genetic variants as instrumental variables. Colocalisation tests 

whether significant association signals shared by two traits are caused by the same variants. 

These two methods are based on different frameworks but share some similarity and are 

complementary (32).   

To test if the GWAS signals are shared with expression quantitative trait locus (eQTL) data 

from blood (https://www.eqtlgen.org/) and multiple tissues (eQTL catalogue, 

https://www.ebi.ac.uk/eqtl/) we will use the summary data-based Mendelian 

randomization (SMR) (33), and the heterogeneity in dependent instruments will be tested 

with (HEIDI) (33). Other MR tools such as GSMR (34), will also be used. Colocalisation will 

be performed with the R package coloc (35) using the fine mapping results (see Section 6.5) 

which allow us to relax the single causal variant hypothesis. This approach is applicable to 

other available molecular quantitative trait locus (molQTL) data, such as protein (plasma) 

quantitative trait locus (pQTL) from the UK Biobank Pharma Proteomics Project (UKB-PPP) 

(36). 

 

Links 

UK Biobank: https://www.ukbiobank.ac.uk/ NIHR: https://www.ukbiocentre.com/ 

TOPMed server: https://imputation.biodatacatalyst.nhlbi.nih.gov/#! PennCNV: 

https://penncnv.openbioinformatics.org/en/latest/ PLINK: https://www.cog-

genomics.org/plink/ REGENIE: https://rgcgithub.github.io/regenie/overview/ 

KnockOffGWAS: https://msesia.github.io/knockoffgwas/ UKB-PPP: 

https://metabolomips.org/ukbbpgwas/  Sanger imputation server: 

https://imputation.sanger.ac.uk/ 

UKB project 76173: https://www.ukbiobank.ac.uk/enable-your-research/approved-

research/genome-wide-association-study-of-myalgic-encephalomyelitis-chronic-fatigue-syndrome-me-

cfs 
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Appendix 
 

Table 1 Primary care codes for diagnoses associated with ME, CFS or Post-viral fatigue 

syndrome 

Code Diagnostic 

F03y. Other causes of encephalitis (& [myalgic encephalomyelitis] or [encephalomyelitis 

NOS]) Other causes of encephalitis Encephalomyelitis NOS Myalgic encephalomyelitis 

XE17Z Postinfective encephalitis (& [myalgic encephalitis] or [myalgic encephalomyelitis]) 

Post-infectious encephalitis Post-infectious encephalitis Myalgic encephalitis 

Postinfective encephalitis 

XE17b 

.F12Z  

Encephalitis/myelitis: [NOS] or [encephalomyelitis & (myalgic)] Encephalomyelitis 

Myalgic encephalomyelitis Encephalitis/myelitis NOS 

Xa01F Chronic fatigue syndrome Myalgic encephalomyelitis ME Myalgic encephalomyelitis 

Myalgic encephalomyelitis syndrome Postviral fatigue syndrome PVFS - Postviral 

fatigue syndrome CFS - Chronic fatigue syndrome 

.F122 Postinfective encephalitis (& [myalgic encephalitis] or [myalgic encephalomyelitis]) 

Post-infectious encephalitis Myalgic encephalomyelitis Myalgic encephalitis 

Postinfective encephalitis 

.F38. Chronic fatigue syndrome Myalgic encephalomyelitis ME - Myalgic encephalomyelitis 

Myalgic encephalomyelitis syndrome Postviral fatigue syndrome PVFS - Postviral 

fatigue syndrome CFS - Chronic fatigue syndrome 

F286. Chronic fatigue syndrome Myalgic encephalomyelitis Myalgic encephalomyelitis ME - 

Myalgic encephalomyelitis Myalgic encephalomyelitis syndrome Postviral fatigue 

syndrome PVFS - Postviral fatigue syndrome PVFS - Postviral fatigue syndrome CFS - 

Chronic fatigue syndrome 

X75s8 Chronic fatigue syndrome Myalgic encephalomyelitis ME - Myalgic encephalomyelitis 

Myalgic encephalomyelitis syndrome Postviral fatigue syndrome PVFS - Postviral 

fatigue syndrome CFS - Chronic fatigue syndrome 

XM06p Chronic fatigue syndrome Myalgic encephalomyelitis ME Myalgic encephalomyelitis 

Myalgic encephalomyelitis syndrome Postviral fatigue syndrome PVFS - Postviral 

fatigue syndrome CFS - Chronic fatigue syndrome 

 mild/mod/sev 

F2860 Mild chronic fatigue syndrome 

F2861 Moderate chronic fatigue syndrome 

F2862 Severe chronic fatigue syndrome 

XaPom Mild chronic fatigue syndrome 



 
34 

 

Code Diagnostic 

XaPon Moderate chronic fatigue syndrome 

XaPoo Severe chronic fatigue syndrome 

 Activity management 

XaPeC Activity management for chronic fatigue syndrome Activity management for myalgic 

encephalopathy Actvty managm for myalg enceph 

.8Q1. Activity management for chronic fatigue syndrome Activity management for myalgic 

encephalopathy Actvty managm for myalg enceph 

8Q1.. Activity management for chronic fatigue syndrome Activity management for myalgic 

encephalopathy Actvty managm for myalg enceph 

 Referrals 

XaR7C Referral to chronic fatigue syndrome specialist team Referral to myalgic 

encephalomyelitis specialist team 

XaRAz 

8HIL. 

Referral for chronic fatigue syndrome activity management Referral for myalgic 

encephalopathy activity management 

8HkW. Referral to chronic fatigue syndrome specialist team Referral to myalgic 

encephalomyelitis specialist team 

 

Table 2 ME/CFS comorbidities 

 

Addison’s Disease – Adrenal insufficiency 

Cushing’s syndrome – Overactive adrenal gland 

Hypothyroidism – Underactive thyroid 

Hyperthyroidism (overactive thyroid) 

Anaemia requiring treatment or blood transfusion 

Haemochromatosis (iron overload) 

Diabetes 

Cancer (including lymphoma, leukemia, melanoma, 

carcinoma, neuroendocrine tumours) 

Upper airway resistance syndrome 
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Sleep apnoea 

Rheumatoid arthritis 

Lupus 

Polymyositis 

Polymyalgia rheumatica 

HIV/AIDs 

Multiple sclerosis 

Parkinson’s disease 

Myasthenia gravis 

B12 deficiency 

Tuberculosis 

Hepatitis 

Lyme disease 

Clinical Depression 

Bipolar Disorder 

Schizophrenia 

Substance abuse 

cerebral cyst 

glandular fever 

orthostatic intolerance 

Post-exertional malaise 
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Sleep disorder 

Pain 

cognitive impairment 

Fatigue 

Extreme pallor 

Nausea and irritable bowel syndrome 

Palpitations 

Urinary frequency and bladder dysfunction 

exertional dyspnoea 

lightheadness 

coeliac disease 

fibromyalgia 

Mast cell activation syndrome (MCAS) 

Q fever 

Narcolepsy 

Sjogren’s syndrome 

Shingles 
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Document change history: 
 

Date Version Description 

2023 03 06 1 New document created. Archived file can be ac-

cessed here - OSF | DecodeME 

2024 03 17 2 Section 2.2 was expanded to include genotyp-
ing visual inspection of clusters rules, 
plate/batch effect and concordance analysis 
 
Section 4.1 was expanded to include improve-
ment of pre-imputation QC 
 
Section 5.1 was expanded to include post-im-
putation QC 
 
Section 5.3.3 was added to include information 
about TarGene analysis. 
 
Section 5.5.3 was updated to reference the rep-
lication cohort used in the study. 
 
Section 5.3.3 was added to include information 
about TarGene analysis. 
 
Section 6 was expanded to include a new sub-
section about phenome-wide association stud-
ies and complement the other subsections 
(tools and databases). 

 

https://osf.io/rgqs3/

